
Feasibility study on component based software
architecture for large scale software systems

P. G. Chaitanya #, Dr. K.V.Ramesh *,
Department of CSE, GIT, Gitam University,Visakhapatnam, Andhra Pradesh, INDIA

* Department of CSE, GIT, Gitam University,Visakhapatnam, Andhra Pradesh, INDIA

Abstract-Component-Based Software Engineering (CBSE)
addresses the development of systems as assembly of
components, components as reusable entities, maintenance and
upgrading of systems by customizing and replacing such
components. The main feature of this approach is
interoperability. This requires established methodologies to
support the entire component and system lifecycle including
technological, organizational, marketing, legal, and other
aspects.The goal of CBSE is to standardize and formalize all
disciplines supporting the activities related to Component -
Based Development (CBD). This paper investigates the whole
environment of component-based approach and implements it
into Personal Information System (PIS) by developing a
common, stable, service calculation software component for
various systems running under PIS. Large scale software system
and due to its ‘hybrid architecture, it needs interoperability to
perform some critical business applications such as service
calculation.This paper discusses mainly based on the feasibility
study of the whole environment of component-based approach,
as it introduces more benefits in terms of reusability, flexibility
and maintainability.
Keywords— Software Engineering, Component based,
Component oriented, interoperability, reusability.

I. INTRODUCTION

The component-based approach is the most recent

approach and will probably mature over the years of the
millennium, in a rapid merging with Internet technologies
and e-commerce. Right now, component-based development
(CBD) is in the leading edge phase. Indeed, there are now a
number of technologies appropriate for, and people with
experience in the application of CBD.

CBSE [1] has emerged as a technology for rapid
assembly of flexible software systems. It combines the
elements of software architecture, modular software design,
software verification, configuration and development. CBSE
is an approach to software development that relies on
software reuse. It emerged from the failure of object-oriented
development to support effective reuse. Interoperability is the
main promise of Component-Based Software Engineering.
This study especially aims to reveal interoperability feature of
this approach.

The history of software engineering begins from
traditional approach that is the first methodology in the
software world. Then object-oriented approach came into this
world and brought many new useful features. And the last
one is-like a return to the correct mean of engineering-
component-based approach. In industry there is of course a
history of this maturity as illustrated in Fig. 1 and described
below [2].

In the 70’s the first traditional methodologies were
defined. By traditional approach, it is meant that software
development using a set of mature and stable technologies,
which often include mainframe-based technologies,
structured analysis and development techniques, and
procedural languages such as COBOL and RPG. Applications
often, built using this approach, are used on mainframes.

During the 80’s the object oriented approach was
expanded to a theory that covered most of the aspects of
software development, including testing and project
management. Object-oriented approach promises a way for
implementing real-world problems to abstractions from
which software can be developed effectively. It is a sensible
strategy to transform the development of a large, complex
super-system into the development of a set of less
complicated sub-systems.

Fig .1: The evolution to components in the industry [2].

The main challenge of software today is to manage the

complexity and adaptability to the changes. A new approach,
focusing on reuse of existing pieces of software and
developing reusable entities and based on new component
technologies, such as JavaBeans, is becoming dominant. The
primary role of Component-based Software Engineering is to
deal with developing systems from parts (components),
developing parts as reusable entities, and maintaining and

P.G. Chaitanya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 968-972

968

improve systems by customizing and replacing those parts.
Component-based development (CBD) is, by far, the most
promising way of controlling the soaring complexity and cost
of business information systems.

II. LITERATURE REVIEW

Iqbaldeep Kaur[1] et.al has done a survey on current

component based software technologies and the description
of promotion and inhibition factors in CBSE. The features
that software components inherit are also discussed. Various
attributes are studied and compared keeping in view the study
of various existing models for CBSE.
 Dr. P. K. Suri[3] et.al emphasized that CBSE
approach is actually based on the principle of ‘select and use’
rather than ‘design and test’ as in traditional software
methods. He presented a series of papers that cover various
important and integral issues in the field concerned.

Arvinder Kaur et.al [4] states that Component based
software development approach is based on the idea to
develop software systems by selecting appropriate off-the
shelf components and then to assemble them with a well-
defined software architecture. The key difference between
CBSE and traditional software engineering is that, CBSE
views the software system as a set of off-the-shelf
components integrated within appropriate software
architecture. CBSE promotes large-scale reuse, as it focuses
on building software systems by assembling off-the-shelf
components rather than implementing the entire system from
scratch. The author concludes that CBSE is a reuse-based
approach to defining and implementing loosely coupled
components into systems. The experiences from author’s
case studies indicate that our method is feasible in an
operational context it improves the efficiency and consistency
of evaluations, it has low overhead costs, and it makes the
COTS selection decision rationale explicit in the
organization.

Arvinder Kaur et.al [5,6] presents an approach for
defining evaluation criteria for reusable software
components. Author also presents a summary of the common
problems in reusable off-the-shelf software selection. Paper
discusses that the evaluated aspects of the method are feasible
and improve the quality and efficiency of reusable software
selection. The off-the-shelf-option (OTSO) method was
developed to consolidate some of the best practices that were
able to identify for the off-the-shelf (OTS) software selection.
The costs involved in adding a component is evaluated by
taking into consideration cost involved in selection,
identification, evaluation of a component.
 Zoran Stojanovic[7] defines a new approach to
components through an Integrated Component-Oriented
framework that provides a comprehensive component-
oriented support for enterprise systems development. The
framework should provide flexibility and reduce complexity
in the development process and a developed system itself in
real application cases where ir should provide efficient and
systematic component-oriented system development.

 III. COMPONENT - BASED SOFTWARE

ENGINEERING

 A component is a software element that conforms to a
software model and can be independently deployed and
composed without modification according to a composition
standard[3].This approach is expected to revolutionize the
development and maintenance of software systems. 70% of
new applications will be deployed as a combination of pre-
assembled and newly created components integrated to form
complex business systems. The main goal of the component -
based software engineering is to increase the productivity,
quality and interoperability. By using this approach, we can
complete programs in less time, language independence,
cross-process interoperability, cross-network interoperability.

Component Based Development (CBD) is taken from
previous approaches and intermediary approaches such as
distributed objects and systems. The distributed object
approach extends the object-oriented approach with the
ability to call objects across address space boundaries,
typically using an “object request broker” capability. The
distributed system approach mean a development approach
for building systems that are distributed, are often Multi-tier
[3].

CBD approach is based on the idea to develop software
systems by selecting appropriate off-the-shelf components [3]
and then to assemble them with a well-defined software
architecture. It is the best way to architect, design,
implement, and deploy scalable systems that provide the
flexibility and agility required by today’s enterprise
environment and is also the latest advance [4] in software
development, promising the possibility of extending the real
world approach to create well-specified parts and top
incorporate legacy code “wrapped” as components.

The purpose of CBD is to develop large systems,
incorporating previously developed or existing components,
thus cutting down on development time and costs. It can also
be used to reduce maintenance associated with the upgrading
of large systems. It is assumed that common parts (classes or
functions) in a software application only need to be written
once and re-used rather than being re-written every time a
new application is developed.

CBSE is both a subset and a revolutionary extension of
current software engineering practices. Component-based
software engineers must define and describe processes to
assure timely completion of high quality, complex software
systems that are composed of a variety of pre-built software
components.

The component-based software life cycle (CSLC) is the
life cycle process for a software component with an emphasis
on business rules, business process modeling, design,
construction, continuous testing, deployment, evolution, and
subsequent reuse and maintenance. In general, analysis and
design phases for component-based process models take
more time than traditional ones take. We expect that the
components satisfy flexibility, reusability, contributing to

P.G. Chaitanya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 968-972

969

interoperability, and maintainability. Though there are some
studies in this era, in this study, only two of them are
selected, one of them being from Stojanovic [7] and the other
COSE [8].
A. Stojanovic Process Model
 A component-oriented development process model,
shown in Fig .2, has been introduced by Stojanovic [7],
focusing on the component concept from business
requirements to implementation. This process will be called
by its author’s name in this study. The phases of
requirements, analysis, design and implementation in a
traditional development process has been substituted by
service requirements, component identification, component
specification, component assembly and deployment.

Fig. 2: Stojanovic Process Model

 After the components of the system are fully specified, a
decision can be made to build components, wrap existing
assets, buy COTS (Commercial Off-the-Shelf) components
or invoke web services over the Internet.

B. COSE Process Model

Ali H. Dogru et.al [8] emphasized that component-based
methodology is immature: Software development
methodologies began with traditional approaches that
followed the waterfall process model. They then moved
toward object-oriented abstractions, which were finally
supported by object-oriented methodologies. Now,
component-based technology introduces abstraction and
lower-level mechanisms but has to be arranged into a
comprehensive software engineering process.

 The second model, COSE Process Model shown in Fig.3
starts its building activity top-down to introduce the building
blocks of the system. As the activity continues towards lower
granularity blocks, interfaces between the blocks are also
defined. At an arrived level where the module is expected to
correspond to a component, a temporary bottom-up approach
can be taken; if desired capability can only be achieved by a
set of components, their integration into a super-component
should be carried out.

 Fig .3: COSE process model

COSE process model consists of four main phases and a
system test phase:
• System specification
• System decomposition
• Component Specification, search, modification, creation
• Integration

COSE Process Model starts with system specification.
Problem is specified and understood, then system high-level
requirements are stated and a preliminary search for existing
components is conducted in system specification phase.
Problem and problem domain knowledge are input to this
phase. System high level functional and non-functional
requirements and domain related existing component
specification documents are the output of this phase.

System is analyzed and decomposed in the system
decomposition phase. Functional requirements are detailed
and required components and their specifications are stated.
Components that are going to be implemented in the system
are specified and developed in component specification
phase, either by using existing components or developing
new components.

IV. AN ILLUSTRATIVE EXAMPLE
In this paper, a detailed study on various components of

Personal Information System (PIS) takes place and focuses
on Service Calculation module because of its complexity and
methodology in the PIS. For developing Service Calculation
module, COSE process model is selected and studied. Each

P.G. Chaitanya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 968-972

970

phase of this process model is performed in a step by step
manner and these steps are listed below:
A. Specification of Service Calculation

Service Calculation module computes total service
period of each personnel starting from beginning date of an
employment in the company till today as shown in fig.4.
Some specific previous workings, which are again for
government, are also added. Previous workings that can be
considered under guarantee of any other insurance are also
added. Besides, some types of leavings during working are
deducted completely. All functionalities, stated above, are
considered as independent components. This study proposes
that there is a need to develop a common Service Calculation
module with the help of component-based methodology.

 Fig .4: use-case diagram for PIS

B. Decomposition of Service Calculation

This phase is performed primarily using top-down
decomposition. Main functions of the system are determined
and they correspond to abstractions of high-level system
functionalities as shown in fig.5. According to these
functionalities, the system is decomposed until a set of
terminal package is reached, where none of which can
usefully be decomposed Into packages further. As mentioned
at specification phase there are six various high-level system
functionalities such as normal service period, pre-service
periods, insurance periods, and leaving periods. These main

functions need various database accesses in different ways
and formats so that they need to be constructed separately.

SERVICE
CALCULATION

Insurance

Pre-Service

Service

Leaving

Fig. 5: First cut of Service Calculation in COSEML

 The components, given are considered the most effective and
efficient in terms of reusability and maintainability.

C. Component specification of service calculation

In this phase, logically specified and decomposed
system will be transformed into physical entities, that is,
components. Searching, modification and creation processes
are performed based on the requirements. For this study,
searching is an unnecessary process because there has not
been any component repository for PBS. Therefore, besides
searching, also modification cannot be performed in this
study either. In this study, decomposed components listed
below are to be developed. The components are Insurance ,
Service, Pre-Services, Leaving, and Service Calculation

D. Integration for Service Calculation
 In this study, our component repository for PIS has only
five components. This can be considered as framework.
These five components are integrated using their interfaces
that work as abstract connection. This integration carries out
final service calculation. There is a sequence diagram fig.6 of
service calculation component. This phase aims to reach
target software system in general. Leaving component is used
by only Service component so when service component is
activated for specific personnel then Leaving component is
activated by Service component’s setting function. Other
three components are activated for the same personnel and
they return relevant Information.

P.G. Chaitanya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 968-972

971

service
calculation

service leaving pre service insurance

set personal id

set personal id

set personal id

set personal id

calculate service date

calculate leaving date

list leaving

calculate each leaving

calculate pre service

calculate insurance

reset

reset

reset

reset

reset

set service

calculate service

set leaving

calculate leaving

set pre service

calculate pre service

set insurance

calculate insurance

set retire date

Fig. 6: Sequence diagram for PIS

V. CONCLUSION

This study is implemented a selected module of
PIS using a new approach of Software Engineering, namely
the component-based Software Engineering. This
implementation provides interoperability and reusability
between two different systems i.e. PIS and vehicle hire
system(VHS) with the access of a common components
and avoids duplications for the systems. With this study,
maintenance cost is expected to be reduced since
components are designed to be independent.

REFERENCES
 [1] Iqbaldeep Kaur, Parvinder S. Sandhu, Hardeep Singh and Vandana

Saini, Analytical Study of Component Based Software Engineering –
World Academy of Science, Engineering and Technology 50 2009. p.p
437-438.
[2] Herzum Peter, SIMS Oliver, Business Component Factory, Wiley
1999.

[3] Er. Iqbaldeep Kaur, Dr. P. K. Suri, Er. Amit Varma, Characterization
and Architecture of Component Based Models International Journal of
Advanced Computer Science and Applications Volume 1 –No.6, Dec
2010.p.p 66-68
[4] Arvinder Kaur and Kulvinder Singh Mann, Component Based
Software Engineering – International Journal of Computer Applications
(0975-8887) Volume 2, May 2010.p.p105-106.
[5] Arvinder Kaur and Kulvinder Singh Mann Component Selection for
Component based Software Engineering, International Journal of
Computer Applications (0975 – 8887) Volume 2 – No.1, May 2010. p.p
110-111.
[6] Jyrki Kontio, OTSO: A Systematic Process for Reusable Software
Component Selection Dec 1995.
[7] STOJANOVIC Zoran, An Integrated Component-Oriented Framework
for Effective and Flexible Enterprise Distributed SystemsDevelopment,
http://www.betade.tudelft.nl/publications/ Stojanovic_CAISE2002.pdf, last
access: 01.12.2005.
[8] DOGRU Ali H., TANIK Murat M., A Process Model for Component-
Oriented Software Engineering, IEEE Software, March/April 2003. p.p
35-39

P.G. Chaitanya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 968-972

972

